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Software implements System functionality

>

An exponential increase in On-
Board software functionality.

Increase in software complexity.

Amount of software on-board
increases, from few Kkbyte in
early 80t to many Mbytes today.

SOHO, 1995 2*64 KB
Rosetta, 2003, 2*1MB
ATV, 2006, SMB
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System vs. Software Dependability and Safety

pendability and Safety needs to be
al software requirements.

d Safety is primarily to handle typical software
ock, task overrun, buffer overflow, division by

1 Safety requirements need to be specified to
. through FDIR, watch-dog, exception handling,
gency.

endability and Safety Requirements : derived
ability and Safety

Jability and Safety Requirements : defined by
1 Safety
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ECSS standard

Space project

management

EUROPEAN COOPERATION

IDcss/

FOR SPACE STANDARDIZATION

Space product .
assurance i =
Crimping of high-re llobiity elechric:
conneclicny

Three levels:
1-Level: Strategy
2-Level: Objective and Function

3-Level: Methods, procedures, tools
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SW Fault handlmg activities, ECSS Q80-03

SW Fault Prevention SW Fault Removal SW Fault Tolerance
Methods

Methods Methods

req. & architecture

gineering process

design &
plementation

process

ccepta}&QproceS%

SW validation process
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Methods identified in ECSS Q80-03 to support the
assessment of software dependability and safety

all analysis activities
the execution of the software
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SW Dependability Methods, objective

SAS July 2006

design/implementation does not contribute

re correctly interacts with HW and that
considered

iInto account in the software

il not cause the software to overstress
change failure severity consequences on
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Dependability assessment methods applicable to life

Software FMECA

1+

cycle phases

Software Fault Tree Analysis

Hw-Sw Interaction Analysis

Software Hazard Analysis

Software Common Cause analysis

In Service History

Engineering analysis

SAS July 2006

most ap I|cable

SW Depend

less applicable



=INESCH RN E TR E

Design Constraints

A number of Dependability and Safety constraints force the adoption of
Techniques and rules during design and implementation activities

0 prevent faults
tions to tolerate faults

Design & Coding Practices
Defensive Programming
Assertion Programming
Recovery Blocks
Segregation/Partitioning
Watchdog
Alive flag
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Fault Removal Techniques

Testing activities
which require the execution of the software

White Box Testing Black Box Testing
Statement Coverage Back-to-Back Testing
Branch Coverage Interface Testing
Path Coverage Stress Testing
Basis Path Coverage Statistical Testing
Multiple Condition Coverage Monte-Carlo Simulation
Linear Code Sequence and Jump Coverage Simulation

Data Flow Coverage

Loop Testing

Cause-Effect Graphing Technique -
Fault Injection Test Analysis
Run-Time Anomaly Detection Test Result Analysis

Test Coverage Analysis

Test Witnessing

Test Data Selection Fault Seeding

Boundary Value Analysis Mutation Analysis

Equivalence Partitioning Sensitivity Analysis

Regression Analysis
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SW Dependability Methods

Analyse

t WCEA
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SW Worst Case Execution Analyse

st feasible execution path, calculate execution
model

It to simulate
e execution times with worst case initial state and
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Cache processor

st recently accessed memory words,

hit, read-miss, write-hit, write-miss,
hing

S: Least recently used (LRU)
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LEON processor, architecture

Local ram

AHB Memaory AMEBA AFE AHBAPE
Conlrollar Conirollar | | | | Bridge

UARTS  Temers  IrgClil VO port
e m = —m m e s == e = = — = — = — = — 4
BRGA2-tits mem b

][ | o] [
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LEON processor characteristics

below 70 MeV/mg/cm2

ata cache (Harvard architecture)
4 sets, 1 - 64 kbytes/set. Random,
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Cache impact on execution time KQ; Z
r

cution time depends on actions
m which influenced the state of

ecution time depends on actions
gher-priority pre-empting task
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Cache control mechanisms

rtain  parts of
in  — reduce
current impact

ffer
Igurable — can

acific  memory

cache content
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Verification problems caused by cache

of modules executed on real HW - First
ertainty

for test cases with different scenarios -
t cache impacts varies for different test runs.
ight SW memory addresses are different

erification of real-time performance
synchronization routines and kernel operations

SAS July 2006




= NS D B B T

Design and code patterns influencing cache
performance

ucture that under specific circumstances
yut under other circumstances the cache

aiche risk

es cache killer or cache risk during its
tches
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Cache killer pattern

placed in different 8KB areas and the
set.
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Cache risk pattern

only rarely

se the loop calls only four packages and
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Concurrent impact patterns

Pkg3.P3;
<wait for something>;

end High;

utes with no cache misses
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Questions we need to answer:

ache killer/risk effect?
tion time?
rgin is needed?

cache memory?
your Schedulability analysis?
ance failure tolerance”?
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Software Dependability Methods

astions?
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